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Figure 1:  Astronaut caught in the process of hammering in the double drive tube at Halo Crater, Apollo
12 (with the side of his hammer!).  “We’ve got a double. Now, the question is can we pull it out?”  NASA
AS12-49-7286.
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Figure 2:  Map of Apollo 12 site., showing location
of double drive tube.

12028 - 12025

Introduction
A core sample was obtained from about 30 meter from
Halo Crater and 220 meters from Bench Crater, Apollo
12.  The double drive tube was driven in 69 cm (figures
1 and 3), but only 41 cm of material was returned
(figures 4 and 5). The bottom segment was completely
full (12025 is the top segment and 12028 is the lower
segment).

Petrography
12028 contains a coarse layer about 2 cm thick.  It
could simply be nothing more than a friable basalt
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Figure 3:  Photo of 12025-12028 double drive tube.  AS12-49-7287.

Mineralogical Mode
Sellers et al. 1971
depths X IX VII VI V IV III-u III-m II I
Glazed
Aggregates 46 10 44 39 14 9 23 6 1
Glass 14 9 10 12 1 22 6 9 15 10
Breccia 3 21 0 2 5 7 5 26 31
Basalt 3 15 8 5 10 22 23 4 5
Anorthosite 2 1 5 1 1
Mineral 29 42 37 40 99 46 54 34 47 51
(see figure 5 for depths)

fragment that broke up into mineral fragments as the
core was driven through it (figure 6).

The maturity index of the Apollo 12 cores have not
been reported by the Is/FeO method, but can, perhaps
be judged by average grain size (figure 4), agglutinate
content (glazed aggregates), rare gas content (figure
6) or fossil nuclear tracks (figure 13).  The average
grain size varied from 64 to 125 microns along the
length (figure 4).  The 2 cm thick, coarse layer had an
average grain size of 600 microns.

The mineralogical characteristics of the double drive
tube were first reported by Seller et al. (1971), McKay
et al. (1971) and Quaide et al. (1971).

The coarse layer is an olivine basalt typical of the
Apollo 12 basalts (Sellers et al. 1971).

Chemistry
The double drive tube has not been analyzed for all
elements (table 1).  Since it was located between 12042
and 12044 (figure 2), the top portion (12025) should
be compared with the analyses of these surface soil.
Laul et al. (1971) have updated the original analyses
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Figure 4:  Dissection diagram of double
drive tube showing location of splits
(LSPET 1970; Sellers et al. 1971).
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Figure 5:  Dissection
diagram from Lunar
Core Catalog showing
average grain size as
function of depth
(Duke 1974).
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Figure 7:  Photo of  2 cm thick coarse layer near top of 12028.  NASA S69-23404.  Scale in cm.

Figure 6:  Summary of rare gas content of the
Apollo 12 double drive tube, indicating maximum
maturity at 10 - 12 cm depth (Marti et al. 1971).

reported by Ganapathy et al. (1970).  The REE content
is quite high.

Cadogen et al. (1972) determined the carbon
compounds as function of depth, but it is difficult to
calculate the total carbon content from this.  Moore et
al. (1971) determined the carbon and nitrogen content
of 9 splits.  The carbon content was relatively constant
at about 130 ppm, while the nitrogen content decreased
from 130 ppm at the surface to about 90 ppm at depth.

Cosmogenic isotopes and exposure ages
Nishiizumi et al. (1979) studied the depth profile for
53Mn for 12025-12028 and Rancitelli et al. (1971)
reported 22Na and 26Al as function of depth (figure 11).

Other Studies
Arrhenius et al. (1971) reported large and irregular
variations in the fraction of track-rich grains ranging
from 0% to almost 100%.  Comstock et al. (1971)
determined the density of nuclear tracks as function of
depth (figure 13).

Marti and Lugmair (1971) and Basford et al. (1973)
determined the isotopes for Xe and Kr as function of
depth (figure 6).

Hoyt et al. (1971) found that material from depth,
emitted light when heated (figures 9 and 10).
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Figure 8:  Close-up photo of dissection of 12025 (upper portion of double drive tube) showing issolation
and removal of a large particle (1 cm) at 27 cm.  NASA  S 69-23806.  Scale is in cm.

Processing
The Apollo 12 cores were 2 cm in diameter (Allton
1989).  Please note that the Apollo 11 and 12 drive
tubes did not cut into the regolith, but rather the regolith
flowed thru the bits to fill the tubes as they were driven
(often hammered) into the regolith – as such, the length
of the cores does not match the depth into the regolith.

There are no thin sections for this core.
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Figure 9:  Thermal luminescence as function of
depth in core (Hoyt et al. 1972).

Figure 11:  Cosmic-ray-induced activity as
function of depth in core 12025 (Rancitelli et al.
1971, 1972).

Figure 10:  Luminescence of indiviual particles as
function of temperature release (Hoyt et al. 1972).
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Figure 12:  Variation of components in double drive tube (McKay et al. 1971).
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Table 1.  Chemical composition of 12028 - 25.
12025 12028 12028 12028 12028 12025 12028 12028 12028 12028

reference Schnetzler71 Laul71 Ganapathy70
depth 1.7 - 2.5 cm 13.2-14.4 18.9-19.7 31.2-32.2 37.2-38.2 1.7 - 2.5 cm 13.2-14.4 18.9-19.7 31.2-32.2 37.2-38.2
SiO2 %
TiO2
Al2O3
FeO
MnO
MgO
CaO
Na2O
K2O
P2O5
S %
sum

Sc ppm
V
Cr
Co 39
Ni
Cu
Zn 6.1 1.5 5.1 5.4 4.3 (b)
Ga 3.9 2.7 5.2 5 5.2
Ge ppb
As
Se 215 86 230 247 237 (b)
Rb 6.84 0.613 7.84 7.93 8.96 (c ) 6 0.32 8.6 9 10.8 (b)
Sr 144.4 80.9 155.2 152.7 154.9 (c )
Y
Zr
Nb
Mo
Ru
Rh
Pd ppb
Ag ppb 28 301 140 3.6 7.2 (b)
Cd ppb 70 22000 53 48 49 (b)
In ppb 77 42 290 9 26 (b)
Sn ppb
Sb ppb
Te ppb 130 10 80 30 90 (b)
Cs ppm 0.25 0.023 0.35 0.36 0.34 (b)
Ba 389 44.9 442 463 518 (c )
La
Ce 90.2 10.2 112 109 121 (c )
Pr
Nd 57.2 7.82 70.1 68.4 78.2 (c )
Sm 16.5 2.7 19.6 19.4 22.2 (c )
Eu 1.74 0.73 2.03 1.97 2.025 (c )
Gd 20.8 3.68 23.2 23.4 27.6 (c )
Tb
Dy 21.2 4.68 25.5 26.1 30 (c )
Ho
Er 13.1 2.83 14.9 15.5 17.1 (c )
Tm
Yb 12 2.77 14 14.2 16.1 (c )
Lu 1.86 0.42 2.08 2.19 2.42 (c )
Hf
Ta
W ppb
Re ppb
Os ppb
Ir ppb 5.9 0.08 8.1 8.7 9.2 (b)
Pt ppb
Au ppb 2.5 0.63 1.7 2.1 2 (b)
Th ppm
U ppm
technique:  (a) IDMS, (b) RNAA, (c ) IDMS
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Figure 13:  Density of fossil nuclear tracks as function of depth in 12025-12028 double drive tube.(Comstock et
al. 1971).
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